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Abstract: The world today is undergoing disruptive, transformative shifts driven by a 
new wave of technological revolutions and industrial changes. In this context, a central 
question for China’s innovation-driven development strategy is how to effectively identify 
and measure high-quality technological innovations. Drawing on the stylized facts and 
scenario narrative of China’s technological landscape, this paper proposes a framework 
and measurement system for evaluating high-quality technological innovations. While 
China’s top-level design for technological innovation is guided by policy documents, the 
increasing number of enterprises applying for “high-tech enterprise” status has coincided 
with a decline in the quality of patent filings. In response, this paper first underscores the 
challenges and necessity of measuring the quality of technological innovations. Second, 
we introduce the high-quality technological innovation indicators and employ them to 
assess the quality of tech innovations at the firm level, utilizing an approach that combines 
analogical narrative, gene coding, text analysis, semantic logic, and a database of granted 
invention patents in China. Third, we examine the systematic and individual biases inherent 
in citation counts, a commonly used indicator, under specific contexts, and employ a 
granular instrumental variable approach to validate the effectiveness of the indicators. 
Finally, we develop a “family tree” of the indicators and explore their application scenarios 
through a combination of established and extended indicators. Our findings provide a 
theoretical foundation for evaluating China’s technological innovation quality, inform policy 
incentives, and offer insights for academia to apply high-quality technological innovation 
indicators in different contexts.
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1. Introduction
Our world is undergoing momentous changes not seen in a century. Disruptive and strategic 

technologies, particularly artificial intelligence (AI), are driving a sweeping technological revolution and 
industrial transformation. 5G is rapidly propelling the world into the era of the Internet of Everything 
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(IoE), while 6G’s integrated space-air-ground network is poised to redefine connectivity, enabling 
breakthroughs such as millimeter-level positioning for the industrial internet, the creation of human 
digital twins, and the development of unified intelligent mobile platforms across vehicles, ships, 
aircraft, and spacecraft. At the same time, the convergence of information technology with fundamental 
sciences like life sciences and materials science is accelerating, driving progress in cutting-edge fields 
like quantum science and brain-inspired intelligence. The application of biological principles alongside 
interdisciplinary knowledge is sparking transformative innovations. AI-powered models for protein 
structure prediction, intelligent medical solutions for disease diagnosis, and advancements in biological 
targeting and mass spectrometry are transforming drug discovery and advancing disease diagnostics 
in unprecedented ways. This new wave of technological and industrial change is disrupting traditional 
industries and is set to reshape the global division of labor, alter the competitive landscape, and redefine 
national advantages. While it brings significant opportunities, it also presents considerable challenges.

To strengthen national competitive advantages, it is crucial to understand and fully leverage the 
operational dynamics and developmental patterns of the new technological revolution. This revolution 
is defined by three key features: First, the disruptive, transformative, and cutting-edge technological 
updates and iterations. These innovations are diffusing exponentially, exerting a revolutionary “zeroing 
effect” (i.e., eliminating outdated practices and technologies) on traditional industries. At the same time, 
major scientific fields are advancing rapidly, both in depth and breadth, from the microscopic to the 
macroscopic, ushering in a new era of Big Science. Second, borderless, multi-point, and exponential 
technological breakthroughs. Technological innovation is increasingly complex and unpredictable, with 
disruptive technologies emerging rapidly from diverse, global sources and advancing at an unprecedented 
pace. Third, interdisciplinary, interregional, and cross-sector collaboration. Emerging technologies 
are driving a cascade of interconnected changes, with technology clusters, interdisciplinary teams, 
diverse stakeholders, and regions working in synergy to foster mutual progress. The acclaimed ASML 
lithography systems, for example, resulted from extensive technological and financial collaboration 
across more than 40 countries, incorporating critical components such as lenses, light sources, wiring, 
and ultraviolet light exposure units. In summary, disruption, breakthrough, and collaboration are the 
defining characteristics of this new wave of technological revolution.

How China can effectively seize historical opportunities and overcome the challenges of the 
industrial and technological revolution is a critical issue in the implementation of its national innovation-
driven development strategy. The CPC Central Committee and governments at all levels have long 
placed great emphasis on scientific and technological innovation, positioning innovation at the heart 
of China’s modernization and adopting an innovation-driven development model as a key national 
strategy. During the “Three Gatherings of Science and Technology” on May 28, 2021, President Xi 
Jinping stated: “We have comprehensively deployed reforms in the technological innovation system, 
introducing a series of major reform initiatives to enhance the overall effectiveness of the national 
innovation system.”1 However, China’s technological innovation is currently hindered by a set of 
interrelated challenges: weak original innovation, insufficient resource integration, and inefficient 
resource allocation, all of which impede the development of high-quality technological advancements. 
A substantial body of literature has explored ways to improve the quality of technological innovation in 
China, focusing on factors such as policy impacts (Long and Wang, 2015; Shen Yu et al., 2018; Chen et 
al., 2020) and mechanism design (Zhang and Zheng, 2018; Bai et al., 2019; Chen et al., 2022). These 
studies consistently highlight issues such as “quantitative growth coupled with qualitative decline” at 
the macro level and “strategic innovation” at the micro level, offering explanations for these phenomena 

1 Xi Jinping. Speech at the 20th Academician Assembly of the Chinese Academy of Sciences (CAS), the 15th Academician Assembly of the Chinese 
Academy of Engineering (CASE), and the 10th National Congress of the China Association for Science and Technology [M]. Beijing: People’s Press, 
2021.
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from historical, theoretical, and practical perspectives. While China’s top-level design for technological 
innovation prioritizes innovation quality, in practice, the focus often shifts to innovation quantity (Chen 
et al., 2022). This discrepancy is reflected in the reliance on easily measurable quantitative indicators, 
such as the number of patents and R&D investment, in planning, goal-setting, and evaluation processes.

We believe the gap between policy intentions and actual enforcement arises from a combination 
of China’s innovation incentives and the challenges in assessing innovation quality. The current 
evaluation system is inadequate, and the difficulty in measuring quality hampers the advancement of 
China’s technological innovation. While invention patents can reflect industry progress and emerging 
technologies, they often fail to capture the full scope of innovation. For example, patents like the “XXX 
Flatbread Oven” and the “Eco-Friendly and Efficient Artemisinin and Dihydroartemisinin Extraction 
Method” may both be categorized as invention patents, yet they differ greatly in terms of originality 
and impact. This disparity in quality becomes even more evident in contexts such as “innovation 
championships” or the “year-end sprint”, which undermine the focus on high-quality innovation. To 
address this, it is crucial to overhaul the system to  measure technological innovation quality, adopting a 
more nuanced, scenario-based approach.

To address this question, we develop an identification framework and a measurement system for 
high-quality technological innovations, grounded in the typical scenario narrative of technological 
innovation in China. Our approach unfolds in several stages: Stage 1: We analyze the key stylized facts 
and relevant indicators concerning the quality and quantity of technological innovations in China. Stage 
2: We introduce a novel measurement system for assessing the quality of technological innovations 
in China, inspired by the analogy of gene coding. Stage 3: We leverage licensed invention patent data 
from 1986 to 2016, alongside textual analysis techniques and semantic reference logic, to estimate 
the originality, influence, and vitality of technological innovations at the firm level. In addition, we 
conduct a comprehensive comparison of existing technological innovation quality indicators, revealing 
both systematic biases stemming from the annual fluctuations in patent applications and individual 
biases related to underlying patent technology citation data. To address these issues, we employ a 
granular instrumental variable approach to eliminate the effects of both types of bias, demonstrating 
the effectiveness of the proposed innovation quality indicators. Lastly, we construct a family tree of 
technological innovation quality and its application scenarios, incorporating an extended set of indicators 
developed in this study alongside existing measurement frameworks.

Exploring the scenario narrative and measurement system for high-quality tech innovations in 
China holds significant research value. This work is crucial for advancing theoretical research on tech 
innovation quality and supporting China’s innovation-driven development strategy. First, we extend 
the measurement of technological innovation quality from patents to the “innovation genes” embedded 
in patents, using the analogy of gene coding and text analysis methodology. Our introduction of the 
“innovation gene” concept offers a new approach to assessing technological innovation quality. Second, 
we develop a measurement system that accounts for both systematic and individual biases, reducing 
errors associated with “strategic innovation”. Finally, we compare the strengths and weaknesses of 
existing indicators with our own, create a family tree of tech innovation quality indicators, and examine 
their application scenarios. Our findings provide valuable guidance for both theoretical research and 
practical applications in tech innovation.

This paper is structured as follows: Section 2 offers a comprehensive literature review, while Section 
3 analyzes stylized facts concerning the quality and quantity of technological innovation in China. 
Section 4 introduces a genetic analogy framework to conceptualize the quality of innovation, and Section 
5 employs text analysis and semantic citation techniques to derive new measures of technological 
innovation quality. Section 6 provides a comparative and contextual analysis to validate these proposed 
indicators, and Section 7 extends the indicators by constructing a family tree of technology innovation 
quality indicators. The paper concludes with a summary of key findings and policy recommendations.
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2. Literature Review
Technological innovation is a key driver of both national and regional development. To harness 

its full potential, it is crucial to first define what constitutes technological innovation and assess its 
current stage of progress. Addressing these fundamental questions about how technological innovation 
is measured provides the theoretical framework and critical foundation necessary for implementing 
effective innovation strategies.

2.1 Early Innovation Measurement: A Quantitative Focus
Earlier research on R&D and innovation output has typically measured the level of technological 

innovation using three types of indicators: (1) Innovation investment, including R&D expenditure 
(Feldman, 1994) and venture capital investment (Gompers and Lerner, 2006); (2) Intermediate 
innovation outputs, such as the number of patents (Griliches, 1990); and (3) New product 
announcements, drawn from trade, engineering, and technical publications (Acs, 2002). Among these, 
the patent-based measurement approach stands out as the most widely used by academics, businesses, 
and government agencies. This approach has gained popularity due to its advantages in providing readily 
accessible firm-level data, delivering clear and interpretable results, and effectively capturing firms’ 
independent innovation capabilities (Feldman and Kogler, 2010; Long and Wang, 2015).

2.2 Debate over Innovation Quantity and Quality: Criticism of the Patent Bubble
As patent counts have become a key metric for assessing technological innovation, many countries 

rely on this easily quantifiable measure to guide policy decisions. In response, various incentive 
programs have been introduced to stimulate further innovation. While these programs have boosted the 
volume of patents, they have also led to a significant issue: the “Patent Bubble”. For example, in 2017, 
China topped the world with 3.17 million patent applications - more than five times the number filed 
by the United States, which ranked second. However, China’s technological innovation, as reflected by 
the sheer quantity of patents, is often overstated and does not accurately capture its true technological 
strength. This discrepancy has sparked ongoing debate about whether patent numbers are a valid measure 
of innovation, particularly in light of concerns over the so-called “patent explosion” and the trade-
off between quantity and quality (Dong and He, 2015). Numerous studies have shown that transitional 
developing countries tend to produce large volumes of patents, but these are often of low quality (Cai et 
al., 2017). In many cases, the focus is placed on quantity rather than the value or impact of technological 
innovation (Harhoff et al., 2003). This trend can be attributed to policies that prioritize quantity over 
quality: as resources are finite and specialized, an emphasis on increasing quantity often comes at the 
expense of quality (Mudambi and Swift, 2014). In the patent context, this creates incentives for firms 
to engage in what is known as “subsidy-seeking innovation” or “strategic patenting” (Shen et al., 2018) 
- a strategy aimed at increasing patent numbers to secure government subsidies, rather than fostering 
meaningful technological advances. The strategic focus on “quantity over quality” in government 
innovation policies (Li, 2012; Chen et al., 2022; Shen et al., 2018) is a fundamental institutional driver 
of this “strategic innovation”, contributing to the misallocation of innovation resources.

2.3 Quantity Bias in Mainstream Patent Quality Measurement
As the importance of innovation quality has become more widely recognized, numerous studies 

have sought to develop methods for measuring patent quality, typically focusing on three key 
dimensions: technological innovativeness, legal stability, and application prospects (Dong and He, 
2015).First, technological innovativeness refers to a patent’s contribution to creativity and novelty 
beyond the existing state of the art. This dimension is often measured using indicators such as patent 
citation counts and cumulative citations (Peter, 2006; Gambardella et al., 2008; Jaffe and de Rassenfosse, 
2017; Reitzig, 2004; Hsu et al., 2014; Zhao et al., 2018), technological scope (Lerner, 1994; Marco et 
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al., 2019; Jiang et al., 2019), foreign citation rate (Boeing and Mueller, 2016, 2019), number of inventors 
(Belderbos et al., 2014; Briggs and Wade, 2014; Briggs, 2015), knowledge breadth, and the scope of 
protection (Lerner, 1994; Aghion et al., 2015; Akcigit et al., 2016; Zhang and Zheng, 2018), among 
others. Second, legal stability refers to a patent’s ability to withstand post-grant challenges, such as 
invalidation. Key indicators of legal stability include maintenance status during patent re-examination 
(Schettino and Sterlacchini, 2009; Ye et al., 2012), patent withdrawal and renewal rates (Long and Wang, 
2015), patent litigation rates (Harhoff et al., 2003), clarity of language in patent applications (Rai, 2013; 
Dargaye, 2013), and the granted patent maintenance rate (Schettino and Sterlacchini, 2009; Ye et al., 
2012). Third, application prospects reflect the potential economic value a patent can create for related 
products. This dimension is indirectly measured by factors such as the duration of patent maintenance 
(Zhu et al., 2009), annual patent lapse rates, number of active patents, N-year patent survival rate, and 
patent transfer, licensing, and pledging activities (Lanjouw and Schankerman, 2004). Additionally, 
other indicators such as the percentage of invention patents and the patent approval rate have also been 
used to assess patent quality (Zhang et al., 2011). These dimensions together provide a comprehensive 
framework for evaluating the quality and potential impact of patents.

Recent literature on measuring technological innovation has moved beyond the previous focus 
on quantity, recognizing both the importance and variation in the quality of invention patents. Studies 
now assess patent quality across technical, legal, and economic dimensions, marking a significant 
step forward. However, this paper acknowledges that many of these indicators are still influenced by a 
quantitative perspective. In the technical dimension, patent citations are commonly used to measure firm 
patent quality (Hsu et al., 2014). This approach, however, has notable limitations: (1) Citation counts 
do not distinguish between truly original patents and popular “strategic” patents, which may be filed in 
trending areas and thus receive more citations (Dang and Motohashi, 2015); (2) Citation counts often 
overlook high-quality “sleeping beauty” patents with interdisciplinary potential and technological value 
(Du and Wu, 2018); (3) Citation patterns can be distorted by chaotic or excessive citations during “patent 
bubbles”. As such, it is crucial to identify more refined indicators that genuinely capture the quality of 
technological innovation, grounded in the true nature of innovation itself.

2.4 Measuring the True Value of Innovation: A Methodological Reassessment
Schumpeter’s concept of “creative destruction” underscores the essence of innovation as the 

fundamental engine of economic growth. However, when attempting to measure technological 
innovation in China, particularly through patent citation data, several challenges arise. One key issue is 
that China’s patent citation practices do not always align with international standards. First, the China 
National Intellectual Property Administration (CNIPA) initially lacked clear regulations regarding 
patent citation data. Second, a significant portion of citation data has been added retroactively by patent 
examiners, introducing potential biases and complicating the reliability of this information. As a result, 
accurate and dependable patent citation data for businesses remains difficult to obtain. This challenge, 
however, presents an opportunity to rethink how we measure the quality of technological innovation 
in China. To address this, this paper proposes using semantic citation analysis as a more effective 
alternative to traditional citation methods. Unlike physical citations, semantic citation analysis allows 
for a deeper understanding of the technical content of patents, offering more precise insights into patent 
quality and a clearer view of the technological development trajectory (Du and Wu, 2018; Guo, 2019). 
This approach opens new avenues for evaluating the quality of technological innovation. Specifically, 
this paper employs text analysis techniques and applies a gene-coding analogy to extract “innovation 
genes” from patents, thereby identifying the original knowledge embedded within them. By utilizing 
the semantic relationships between patents, it constructs a measurement system that more accurately 
reflects the true essence of technological innovation quality. In the final section, the paper evaluates the 
effectiveness of this system in the context of China’s technological innovation landscape.
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3. Stylized Facts of High-Quality Technological Innovation in China
3.1 Originality as a Strategic Priority in China’s Innovation Policy

China’s system for incentivizing technological innovation has consistently prioritized the quality of 
innovation, a focus that has become even more evident in the context of the current wave of disruptive, 
transformative, and frontier technologies. In this paper, we have collected over 1,000 policy documents 
related to science and technology innovation published over the past two decades. These documents 
include laws, administrative regulations, departmental rules, normative policies, development plans, 
and strategic outlines issued by China’s national legislative bodies, the central government, key 
administrative departments, and representative local governments. The data primarily comes from the 
State Council, the Ministry of Science and Technology (MOST), and the Ministry of Finance (MOF).

Using a combined approach of text analysis and manual search, we extracted keywords associated 
with technological innovation from these documents. Textual analysis of over 1,000 policy documents 
reveals the following key insights: (1) Terms like “originality”, “high quality”, and “quality” are central 
to the overarching design of China’s technological innovation strategy. (2) In practice, indicators such 
as patents, invention patents, and R&D are frequently employed to measure the success of technological 
innovation efforts in the country. At all levels of government, a “patent catch-up strategy” has been the 
dominant approach to innovation development. Patent application targets are cascaded from national 
to local governments through top-down policy directives. The implicit pressure to meet patent quantity 
targets has led local governments to adopt patent development plans with clear, quantifiable objectives, 
accompanied by a series of innovation incentives aimed at increasing patent numbers. However, this 
focus on quantity has led to unintended consequences, including the phenomenon of “innovation for 
the sake of quantity” and the compromise of quality in pursuit of these targets - a practice referred to as 
“strategic innovation”.

3.2 Quantity-Driven Growth in High-Tech Enterprise Applications
High-tech enterprises are the primary applicants for invention patents in China. Since 2007, China 

has actively fostered innovation in these enterprises through its High-Tech Enterprise program, which 
offers innovation subsidies to eligible companies. A key criterion for obtaining this designation is the 
number of patents a company holds2. However, once a company is granted High-Tech Enterprise status, 
no additional patent quantity requirements are imposed. As a result, companies, eager to secure the 
benefits of this designation, are often incentivized to rapidly expand their patent portfolios, sometimes 
inflating them, leading to a competitive rush for certification. This phenomenon has resulted in what is 
often referred to as a “scramble for high-tech status”.

3.2.1 Model specification
Using a multi-source matched database from 2007 to 2016 and a multi-period difference-in-

differences (DID) method, this paper empirically investigates the change in invention patent quantity 
before and after companies achieve High-Tech Enterprise certification, indirectly assessing whether a 
“patent surge” or “patent bubble” exists during the application for this designation. The econometric 
model is specified as follows:

                        Patentit =α+βGxqyit +γX+δi +μt +εit                      (1)

In the above equation, patentit denotes the number of granted patent inventions for firm i in year t. 
The regression analysis employed transformations of the dependent variable, including log(patent+1), 

2 While the program sets a minimum patent threshold for certification, in practice, most companies exceed this baseline by a significant margin.
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the inverse hyperbolic sine (IHS), and PPML. Gxqyit is the dummy variable for High-Tech Enterprise 
status: A dummy variable is used to indicate High-Tech Enterprise status, taking a value of 1 if the firm 
is certified and 0 otherwise. X are control variables potentially affecting firms’ technological innovation. 
To address the potential impact of High-Tech Enterprise status on these control variables, we control for 
the pre-event time trends by interacting the 2007 baseline values of these variables with year dummies. 
δ and μt represent firm and time-fixed effect, respectively, controlling for unobserved time-invariant 
firm-level heterogeneity and macro-level time trends. εit denotes the error term. For Model (1), data 
on the dependent variable Patentit  come from the SIPO, while data on the independent variable Gxqyit 
are sourced from the Department of High and New Technology Development and Industrialization of 
the Ministry of Science and Technology (MOST). The main control variables are: (1) Firm size (log of 
operating profit and year-end total assets); (2) Tax payment (log of current-year tax payment); (3) Fixed 
assets (calculated using the perpetual inventory method); (4) Government subsidies (log of subsidies 
received from government agencies).

To capture the dynamic effects of High-Tech Enterprise certification on firms’ innovation output, we 
decompose the average treatment effect (Gxqyit) into dynamic treatment effects. To capture the effects in 
the first three years after certification, three dummy variables, Gxqy1it, Gxqy2it and Gxqy3it

3 are created. 
Our sample includes only firms that were recognized as High-Tech Enterprises between 2007 and 2016. 
This selection criterion ensures sample comparability and is based on the use of dummy variables. The 
econometric model is specified as follows:

                        Patentit =α+β    Gxqyjit +γX+δi +μt +εit∑ 3
j=1                 (2)

In equation (2), Gxqyjit equals 1 if year t is the jth year after the firm’s High-Tech Enterprise 
recognition, and 0 otherwise.

3.2.2 Preliminary evidence of a quantitative leap
Table 1, columns (1)-(4) show the average treatment effect of High-Tech Enterprise recognition 

on firms’ granted invention patents. Columns (1) and (2) report estimates for the full sample, while 
columns (3) and (4) report estimates for the High-Tech Enterprise subsample. Overall, High-Tech 
Enterprise recognition significantly increases the number of firms’ invention patents by nearly 0.2. 
However, the full sample estimates are clearly subject to sample selection bias: Compared with other 
enterprises, High-Tech Enterprises exhibit a distinct pattern of innovation output, with a surge before 
recognition and a decline immediately after4. Because high-tech enterprises are more comparable, the 
results in columns (3) and (4) provide a clearer reflection of the policy effect of high-tech enterprise 
recognition. On the whole, high-tech enterprise designation did not lead to an increase in firms’ invention 
patent output.

3 We define the treatment period as spanning from the year of High-Tech Enterprise recognition (t=0) to three years post-recognition (t=3), and our 
analysis includes only treated firms within this period.

4 We also conducted a parallel trend test. Column (1) did not pass the parallel trend test, but column (2) did. Due to space constraints, these results 
are not reported here.

Table 1: Preliminary Evidence of a “Quantitative Leap”: Two-way Fixed-Effects Model

Variable
(1) (2) (3) (4) (5) (6) (7) (8)

ln(patent+1) arcsinh ln(patent+1) arcsinh ln(patent+1) arcsinh ln(patent+1) arcsinh

Gxqy 0.1530***
(0.0042)

0.1964***
(0.0057)

-0.0176
(0.0121)

-0.0232
(0.0147)
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The High-Tech Enterprise designation is valid for three years. High-Tech enterprises that have 
exceeded their validity period need to undergo a review to determine if they still meet the certification 
criteria. This also suggests the potential for R&D manipulation incentives among High-Tech Enterprises: 
Namely, the reallocation of R&D activities across different time periods. In light of this, we performed 
dynamic effect tests of the High-Tech Enterprise designation in columns (5) through (8), with (5) and (6) 
representing the full sample regressions and (7) and (8) showing the results for the High-Tech Enterprise 
sample. The results presented in columns (5) and (6) indicate that High-Tech Enterprise designation 
does not yield an increase in technological innovation output during the first year post-designation; the 
within-group comparison results in columns (7) and (8) further demonstrate that the number of invention 
patents for High-Tech Enterprises actually declines in the first year following designation, with no 
evidence of a policy-driven effect observed in the second year. For the lagged High-Tech Enterprise 
certification dummy Gxqy3, the estimated coefficients in columns (5)-(8) are all significantly positive, 
indicating a significant increase in the innovation output of High-Tech Enterprises in the year prior to 
the review. These results suggest that there is significant time manipulation of corporate R&D activities 
during the High-Tech Enterprise certification process. That is, it is not that the policy effect of High-Tech 
Enterprise certification is insignificant, but rather that time manipulation leads to a clear “quantity jump” 
before certification and review.

3.2.3 Heterogeneous treatment effect (HTE)
The use of a two-way fixed effects model to estimate a staggered DID design is vulnerable to bias 

due to the presence of heterogeneous treatment effects, which can lead to biased estimated coefficients. 
While the Bacon decomposition indicates severe bias from “forbidden comparisons” in two-way fixed 
effects estimates, the dynamic nature of High-Tech Enterprise certification - where firms can both gain 
and lose status - necessitates the use of robust DID estimators. As a result, we employed a series of 
heterogeneous robust DID estimators, drawing on methods from Gardner (2021), Borusyak et al. (2022), 
De Chaisemartin and D’Haultfoeuille (2020), Callaway and Sant’Anna (2021), Sun and Abraham (2021), 
and Cengiz et al. (2019). The average treatment effect results from the heterogeneity-robust estimators, 
and the results are consistent with those in Table 1. Furthermore, we present the dynamic treatment 
effects of the heterogeneous robust DID estimators in Table 2.

Variable
(1) (2) (3) (4) (5) (6) (7) (8)

ln(patent+1) arcsinh ln(patent+1) arcsinh ln(patent+1) arcsinh ln(patent+1) arcsinh

Gxqy1
-0.0073
(0.0069)

-0.0071
(0.0078)

-0.0203**

(0.0102)
-0.0260**

(0.0133)

Gxqy2
0.0237***

(0.0073)
0.0335***

(0.0088)
-0.0089
(0.0089)

-0.0122
(0.0116)

Gxqy3
0.0684***

(0.0072)
0.0908***

(0.0092)
0.0736***

(0.0090)
0.0920***

(0.0117)

Sample size 3204585 3204585 61750 61750 2986395 2986395 61750 61750

Controls Y Y Y Y Y Y Y Y

Time FE Y Y Y Y Y Y Y Y

Individual FE Y Y Y Y Y Y Y Y

Note: (1) Figures in parentheses are standard errors; (2) *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively; (3) 
The same applies below.

Table 1 Continued
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Table 2: Preliminary Evidence of “Quantity Leap”: Heterogeneous Robust DID Estimators

Variable
(1) (2) (3) (4) (5)

Borusyak et al. (2022) De Chaisemartin and 
D’Haultfoeuille (2020)

Callaway and 
Sant’Anna (2021)

Sun and Abraham 
(2021) Cengiz et al. (2019)

Gxqy1
-0.0251***

(0.0053)
0.0046

(0.0065)
-0.0112*
(0.0066)

-0.0074
( 0.0071 )

-0.0072
(0.0064)

Gxqy2
0.0571***
(0.0083)

0.0530***

(0.0083)
0.0238***
( 0.0071 )

0.0440***
(0.0079)

0.0243***
(0.0068)

Gxqy3
0.1147***
(0.0074)

0.1775***
(0.0111)

0.0786***
( 0.0073 )

0.1315***
(0.0098)

0.0692***
( 0.0072 )

Sample size 3857950 2658271 2894186 3030861 38006133

Controls Y Y Y Y Y

Time FE Y Y Y Y Y

Individual FE Y Y Y Y Y

Note: (1) In Table 2, the dependent variable is specified as the natural logarithm of one plus the number of patents (ln(patent+1)). (2) The results obtained 
using the inverse hyperbolic sine (IHS) transformation are qualitatively similar and are omitted due to space limitations.

3.3 Rushing for Growth: “Quality Decline” in the “Patent Catch-up Plan”
The drive for policy gains is not confined to the micro level of high-tech enterprises, but extends to 

the macro level, where regions compete for growth. A case in point is that, in the context of innovation-
driven development, local governments have assigned paramount importance to innovation, leading to 
the direct implementation of “patent catch-up plans” designed to increase patent output. These plans are 
manifested in documents such as government annual work reports, “Five-Year Plans”, and annual patent 
application quotas5. This creates a significant constraint on the evaluation of government performance, 
as the inclusion of tasks with specific quantitative targets in work reports and plans may incentivize a 
decline in patent quality.

3.3.1 Assessing invention patent quality using a duplicate checking method
This paper focuses on assessing the quality of technological innovation. The aim of this section 

is to use stylized facts to highlight a “quantitative surge” coupled with a corresponding “qualitative 
deterioration” in innovation activities. In the absence of a novel metric for measuring technological 
innovation quality, we apply a duplicate-checking method to perform a basic assessment of invention 
patent quality. The core assumption is that if the abstract of an invention patent closely resembles 
the text of existing patents in a comprehensive patent database, it may indicate a lack of novelty, 
raising concerns about the patent’s inventiveness. Statistical analysis reveals that patents with greater 
overlap with prior knowledge are often simple reformulations of existing ideas, suggesting a decline 
in originality. To evaluate the degree of textual overlap, this paper employs the following methodology 
for Chinese granted invention patents from 2000 to 2016: We implemented a Python-based algorithm 
to detect textual similarity among scientific and technological projects. The algorithm was then applied 
to assess the textual overlap of each granted invention patent against a dynamically updated database 
of all patents issued prior to the patent’s grant date. Using Gensim for textual similarity analysis, we 
considered any continuous sequence of eight or more identical characters as a match. We calculated a 
textual overlap score for each patent’s abstract to determine its repetition rate. Finally, by applying a 
weighted average based on patent citation counts, we computed the annual average textual overlap score 

5 For example, Anhui Province issued “Ensuring the Completion of the Annual Patent Application Volume Task” in 2007, while Zhejiang Province 
clarified the patent doubling target in the “Twelfth Five-Year Plan”.
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for granted invention patents across provinces. A high average repetition rate at the provincial level 
suggests potentially lower technological innovation quality.

3.3.2 Model specification
Using a multi-period DID approach with provincial-level invention patent data from 2000 to 2016, 

this paper empirically examines the effect of “local patent catching-up policies” on invention patent 
quality. The econometric model is specified as follows:

                         Qualityit =α+βzgjhit +ηX+λi +δt +εit                        (3)

In equation (3): zgjhit is an indicator variable equal to one if province i implemented a patent 
catching-up policy in year t, and zero otherwise6; Qualityit represents the average repetition rate (expressed 
as a percentage) of invention patents applied for by province i in year t; X  denotes the interaction term 
between pre-treatment control variables for province and year dummies, where pre-treatment control 
variables include three-year averages (1997-1999) of variables such as provincial GDP; α is the constant 
term; β and η are parameters to be estimated; λi, δt, and εit represent province fixed effects, year fixed 
effects, and the error term, respectively.

3.3.3 Preliminary evidence of “quality decline”
We present the empirical findings on the “quality slide” within the context of the “patent catching-

up plan” in Table 3.

Table 3: Preliminary Evidence of “Quality Decline”7

Variable
(1) (2) (3) (4) (5) (6)

TWFE TWFE TWFE Borusyak et al. 
(2022)

Callaway and 
Sant’Anna (2021)

Cengiz et al. 
(2019)

zgjh 9.8872***
(1.7716)

7.5457***
(1.8252)

7.1162***
(1.9507)

12.8669***
(2.7631)

10.1498***
(2.1437)

10.9223***
(2.7124)

Sample size 510 510 510 510 510 975

Controls N Y Y Y Y Y

Time FE N Y Y Y Y Y

Individual FE Y Y Y Y Y Y

Note: For heterogeneous robust DID estimations, we employed the group-time average treatment effect, stacked regression, and an imputation method. 
The results are presented in (4)-(6), respectively.

The results presented in Table 3 indicate that the estimated coefficient of zgjh is statistically 
significant and positive at the 1% level. For instance, in column (2), the estimated coefficient of zgjh 
is 7.546, indicating that provinces implementing the patent catching-up plan experienced a 7.546 
percentage point increase in the text repetition rate of patent abstracts. Here, a threshold of 12 repeated 
characters was applied, with the results presented in column (3). To further strengthen the robustness of 
our findings on heterogeneous treatment effects, we utilized several alternative estimators. All models 
consistently indicated a significant “quality slide”. In other words, the focus on meeting patent quantity 
targets and fulfilling task requirements has resulted in a deterioration of patent quality.

6 Data on these policies were primarily drawn from the compilation of provincial patent incentive policies by Long and Wang (2015). This was 
further supplemented by keyword searches in the PKULAW and PKU Legal databases, as well as through general web searches, using search terms such 
as “province name + patent application + subsidy/funding/grant”.

7 In fact, we also selected the standards of 6 and 10 character repetitions to measure patent quality, and the results are still robust.
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4. Theoretical Foundations of a Technological Innovation Quality 
Measurement System

Compared to other patent types, invention patents - commonly used as a benchmark for 
assessing technological innovation - exhibit considerable variability in quality and substantial internal 
heterogeneity. These patents differ significantly in terms of originality, impact, and longevity. This 
variation underscores the necessity for a more nuanced analysis of invention patents, identifying the 
“innovation genes” that truly capture the quality of innovation.

4.1 “Innovation Genes” and Gene Coding: An Analogical Narrative for Innovation Quality 
Assessment

Knowledge is the wellspring and driving force behind technological innovation, which encodes new 
insights, with outputs like patents serving as tangible expressions. Innovation activities can be compared 
to gene coding in three ways: (1) Coding activities: Gene coding governs biological traits through 
transcription and translation, much like knowledge recombination drives innovative outputs embodied in 
patents. (2) Mutation process: Genetic mutations, which alter DNA sequences, fuel biological diversity, 
while original innovation involves the disruptive creation and recombination of existing knowledge. 
(3) Spatial carriers: Just as gene coding is restricted to coding regions, technological innovation thrives 
within specific spatial carriers, such as cities.

The concept of “innovation genes” presents significant advantages - both theoretically and 
practically - over traditional indicators used to assess the quality of technological innovation. (1) A 
microcosm of the macrocosm: Just as gene mutations reveal inherent individual variations, offering 
insights into an individual’s condition, “innovation genes” serve as the foundational elements of 
technological progress. They provide a micro-level perspective that helps us understand the core 
principles and quality of technological advancements. (2) High predictability: Just as genetic mutations 
and recombination influence an individual’s future development, the encoding of “innovation genes” 
directly shapes the future trajectory of innovation. These genes act as both a “barometer” and a 
“weathervane”, offering a high degree of predictability for shifts in technological innovation quality over 
time. (3) A basis for policy evaluation: Just as environmental factors influence genetic recombination and 
mutation, the broader innovation ecosystem shapes the activity of technological “innovation genes”. The 
resulting patterns provide direct, micro-level evidence that can guide the development and refinement of 
technological innovation policies.

4.2 Technological Innovation Quality: Indicators and Comparative Analysis
In this paper’s empirical measurement, “innovation genes” are used to measure innovation quality.

4.2.1 Innovation originality (IO)
Innovation originality measures whether “innovation genes” within a patent are original or were the 

first to be identified. If a city is a source of innovation, it should generate more original genes and drive 
the innovative development of other cities through flow, spillover, and combination. This paper identifies 
earlier-identified “innovation genes” as original, reflecting their understanding of future technologies 
and trends and their forward-looking nature. Specifically, this paper identifies “innovation genes” that 
emerge earlier chronologically as original “innovation genes” xijklt.

               1, if nijklt ≤ Njk×5%∩Njk [50, +∞) or nijklt ≤ ∩Njk [20, 50)
0, elsexijklt={                  (4)

In equation (4), Njk denotes the total count of “innovation gene” j occurrences in industry k; nijklt 
indicates the temporal rank of “innovation gene” j within patent l of firm i in industry k during year t; 
and xijklt signifies the originality of “innovation genes” within patent l of firm i in industry during year t. 



13China Economist Vol.20, No.1, January-February 2025

An “innovation gene” is considered original if its temporal rank falls within the top 5%, assigning it a 
value of 1; otherwise, the value is set to 08. Furthermore, a small number of total occurrences for certain 
“innovation genes” could suggest their relative uncommonness. Therefore, this paper introduces two 
thresholds: if an “innovation gene” occurs less than 20 times, it is excluded from the analysis; if it occurs 
between 20 and 50 times, the first instance is identified as the original innovation gene.

Once “innovation genes” are identified, the originality-based technological innovation quality IOit of 
firm i at year t can be calculated using the following formula:

                                  IOit = xijklt∑ ∑ ∑K L J
k l j                              (5)

In equation (5), K is defined as the total number of industries covered by all authorized patents of 
firm i during year t; J is defined as the number of “innovation genes” present in the l th patent of firm i 
within industry k during year t; and L is defined as the total count of authorized invention patents held by 
firm i within the industry k during year t.

4.2.2 Impact assessment (IA)
The quality of a firm’s technological innovation should also be reflected in the extent to which its 

invention patents influence subsequent invention patents. As analyzed above, the physical citation count 
of patents is often used to measure the degree of influence of patents on subsequent research activities. 
Different from existing research, this paper will use semantic citation counts to measure the quality of 
technological innovation in the influence dimension. When defining semantic citation relationships, if 
“innovation gene” i appears later than “innovation gene” j, it is a semantic citation of j by i. This paper 
defines innovation impact IAit as the semantic citation count of a patent. The technological innovation 
quality of firm i in year t within the sample period can be expressed as:

                        IAit = Sijkl,t+m , t≤m∑ ∑∑ ∑m LK J
1 lk j                        (6)

In equation (6), Sijkl,t+m is defined as the total number of semantic citations received by the “innovation 
gene” j embedded in the lth patent of firm i operating within industry k during year t throughout the 
sample period; m is defined as the temporal length of the sample period.

4.2.3 Innovation vitality (IV)
Beyond originality and influence, we also assess innovation quality based on the duration of 

“innovation genes”, reflecting their longevity. The innovation duration of firm i at year t within the 
sample period is defined as IVit, which can be expressed as:

                             IVit =
(yijklt −t)∑∑ ∑LK J

lk j

piklt ∑∑ LK
lk

                           (7)

In equation (7), yijklt denotes the final year of occurrence within the sample period for the “innovation 
gene” j of firm i’s lth patent in industry k during year t, and piklt indicates the count of “innovation genes” 
within that patent.

Our three indicators for assessing the quality of technological innovation are designed to capture 
key aspects of China’s innovation contextual narrative, addressing critical challenges in the respective 
dimension: (1) Innovation originality: Evaluates the uniqueness, pioneering nature, and foundational role 
of technical methods, emphasizing their novel and de novo creation. (2) Innovation influence: Measures 
the impact of technological methods on subsequent innovations, particularly their ability to inspire and 
shape follow-on activities. (3) Innovation duration: Assesses the longevity of a method’s influence, 
focusing on its sustained relevance over time.

8 In fact, we also selected criteria of 1%, 2%, and 10%, which basically does not change the ranking results of Figures 3 to 5.
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5. Semantic Measures of Technological Innovation Quality: A Validity 
Analysis
5.1 Textual Analysis of Technological Innovation Quality

5.1.1 Data description
This study utilizes granted Chinese invention patent data from 1986-20169, sourced from the State 

Intellectual Property Office (SIPO). Covering 279 Chinese prefecture-level cities and their subordinate 
administrative divisions (counties, townships, villages, towns, and street units), the dataset includes 
information on granted patents from these jurisdictions between 1986 and 2016, such as “patent title”, 
“application date”, “application address”, “patent classification number”, and “patent applicant”, 
comprising 2.9 million records.

The utilized invention patent data serves several key purposes: (1) extracting “innovation genes” 
from patent titles via word segmentation; (2) converting patent application addresses to administrative 
division codes; (3) mapping patent classification codes to corresponding national economic sectors; and 
(4) calculating “innovation gene” lifespans based on patent application dates.

5.1.2 Data cleansing
This study uses data on invention patents granted to Chinese enterprises from 1986 to 2016. The 

data, obtained from the State Intellectual Property Office of the People’s Republic of China (SIPO), 
is encoded in Unicode format. The raw data contained instances of misalignment and missing values, 
which we addressed using the following procedures:

Data misalignment correction: We found that a significant number of patent classification numbers 
were incorrectly placed within the patent applicant field. Because patent classification numbers 
consistently begin with a capital letter, we implemented a simple rule: if the first character of the data 
in the applicant field was uppercase, we moved that data to the patent classification number field. This 
corrected the misalignment.

Missing value imputation and handling: The raw data had missing values for key variables, 
including patent name, patent application date, and patent application address. To solve this problem, we 
used cross-referencing with other patent databases, including the Wanfang Patent database, to impute the 
missing information. After this imputation process, approximately 1.23% of the sample still had missing 
data for these key variables. We removed these incomplete records from the analysis. Given the small 
proportion of missing data and the assumption that the missingness was random (Missing Completely At 
Random, MCAR), we believe this removal will have a negligible impact on our findings.

5.1.3 Lexicon construction
This study constructs a comprehensive, industry-wide lexicon based on the default dictionary 

provided by the Jieba segmentation tool. To enhance coverage of industry-specific terminology, we 
integrated industry-specific lexicons from over 30 sectors, guided by the 2017 National Economic 
Industry Classification of China. This resulting lexicon encompasses both common vocabulary and 
specialized terms from various industries.

In subsequent text analysis and word segmentation, this custom-built lexicon serves as the 
foundation for identifying and segmenting the titles of granted patents. This approach aims to maximize 
the reliability and effectiveness of the segmentation results. By developing this comprehensive lexicon 
of innovation-related terms across industries, we address the limitations of Jieba’s default dictionary, 

9 Innovation impact is measured using semantic citation counts, with a three-year citation window. Given potential shifts in knowledge diffusion and 
innovation dynamics post-2020 due to the COVID-19 pandemic, the analysis’s time frame concludes in 2016.
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which contains a relatively limited vocabulary. This allows us to more effectively identify relevant 
segments of innovation knowledge within patent information and, consequently, more accurately capture 
the “innovation genes” present in each granted invention patent.

5.1.4 Illustration of Jieba segmentation
Based on the industry-wide lexicon and stop word list developed in the preceding stage, we perform 

word segmentation on each patent to extract its embedded “innovation genes”. Figure 1 illustrates this 
process:

10 Existing innovation measurement indicator systems also include some macro-level indicator systems, such as the China National Innovation 
Index released by the Chinese Academy of Science and Technology for Development (CASTED), and the China Innovation Index (CII) developed 
by the research group of the Department of Social, Science and Technology of the National Bureau of Statistics (NBS) in its “China Innovation Index 
Research”. These types of indicators focus on the macro scale, which is different from the focus of this paper, and therefore will not be discussed.

Figure 1: Illustration of “Innovation Gene” Extraction Using Text Segmentation

Patent name: A Type of Antibacterial, Transparent, Heat-Insulating Nano Glass Coating and Its Preparation Method

A type of / antibacterial / 
transparent / heat-insulating / 

nano / nano-glass / glass coating 
/ coating / and its / preparation / 

method

Remove specific 
uninformative stop 
words, including “a 

type of” and “method”

Semantic matching 
within a complete 

knowledge repository

Antibacterial / transparent / heat-
insulating / nano / nanoglass 

/ glass coating / coating / 
preparation

Complete 
knowledge 
repository

Stop word 
list

Antibacterial / transparent / heat-
reflective / nano / glass / glass 

coating / coating

We obtained approximately 370,000 “innovation genes” from 2,905,721 granted invention patents 
spanning 1986-2016 through data cleaning and Jieba word segmentation. These genes constitute our 
“innovation gene” database (see Table 4).

Table 4: Sectoral Distribution of Chinese Technological “Innovation Genes” (1986-2016)

All sectors Agriculture Mining Manufacturing Electric 
heating Building Information Services

371,517 19,714 5,942 245,822 15,867 23,218 36,448 24,506

5.2 Measuring Technological Innovation Quality: A Comprehensive Comparison of Existing Indicators10

Drawing on existing literature, this paper highlights the advantages of leveraging semantic citation 
analysis to evaluate the quality of technological innovation. Through text analysis, we have extracted 
key “innovation genes” for further assessment. Notably, our semantic citation analysis provides a more 
accurate measure of technological innovation quality compared to traditional methods. However, a 
significant challenge in establishing the scientific rigor of our approach lies in identifying an appropriate 
benchmark for comparison, as existing indicators are often marred by measurement biases. The 
subsequent sections of this paper will address this challenge in detail.
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5.2.1 A series of indicators measuring the level of technological innovation
Measuring innovation quality typically involves evaluating the level of technological innovation 

embedded in patents or products, a widely adopted practice in both academia and industry. This 
evaluation generally focuses on three key categories of indicators: (1) Citation indicators, such as the 
frequency with which a patent is cited; (2) Technological intersection factors, including the number 
of inventors, the diversity of knowledge areas involved, and the breadth of patent protection; and (3) 
International engagement, which looks at the proportion of global patent filings and the rate of foreign 
citations. These indicators primarily assess the extent of patent innovation from the standpoint of 
technical attributes and academic value, highlighting the scientific and technological importance of the 
innovation.

Table 5: Indicators for Measuring Technological Innovation Quality

Category

Physical Citation Scope of Technology Coverage International Engagement

Number of citations Number of 
inventors Knowledge breadth Scope of rights 

protection

Proportion of 
international 
applications

Rate of foreign 
citations

Indicator Number of times a 
patent is cited

Number of 
inventors

Number of CPC 
categories

Text, descriptions, 
and illustrations

International 
patents / total 

number of patents

International 
citations / total 

citations

Meaning
More citations suggest 
greater influence of the 

patent

Collaborative 
patents offer higher 

quality

Cross-disciplinary 
patents offer higher 

quality

Broader coverage 
means better quality

International 
patents are of 
better quality

Patents with 
international 

influence have 
better quality

Data scale Patent level Patent level Patent level Patent level Corporate level Patent level

Advantages Reasonable 
measurement

Simple and 
straightforward

Simple and 
straightforward Highly professional Simple and 

straightforward
Reasonable 

measurement

Disadvantages

Tend to cite the latest 
and currently popular 

literature, lacking 
coverage of all relevant 

literature

Doubtful logic Doubtful logic Hard to quantify
Doubtful logic, 
numerous zero 

values

High data 
requirements, 
numerous zero 

values

Application 
scenarios Numerous and extensive

Cooperation 
between innovation 

entities

Cross-disciplinary and 
domains of innovation 

collaboration
Few

Multinational 
companies or 

global expansion

International 
comparable 
technologies 
or products

Citation count, determined by the number of cited patents, remains the most widely used metric 
in research due to its robust data availability, sound theoretical foundation, and broad applicability. 
However, alternative indicators such as inventor count and knowledge breadth - which measure the 
scope of patent technologies - provide distinct advantages for analyzing inter-organizational and 
interdisciplinary collaborations. Additionally, indicators that emphasize transnational dimensions, such 
as the involvement of foreign inventors or international patent filings, are particularly valuable for 
assessing cross-border technological activities.

5.2.2 Legal text content indicators
Unlike indicators that primarily evaluate the degree of technological innovation, legal text content 

analysis emphasizes assessing the quality of innovation. This approach examines elements within patent 
application text and legal status, incorporating indicators such as the number and scope of claims, legal 
status, and the characteristics of textual content.
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Table 6: Technological Innovation Quality: Legal Text-Based Indicators

Category
Rights claim Legal status Text content

Priority Maintenance of 
granted patents

Ratio of invalid 
patents Effective duration Language clarity Repetition

Specific 
measurement Number of priority rights Valid patents / total 

number of patents

Invalid patents / 
total number of 

patents

Patent grant date to 
expiration date NLP method Gensim algorithm, 

etc.

Meaning
Level of importance 

attached by a firm to an 
international patent filing

Maintenance rate 
reflects corporate 
patent valuation

Low-value patents 
have a high 

invalidity ratio

Effective duration 
reflects corporate 
patent valuation

Level of innovation 
is positively 

correlated with text 
quality

High-repetition 
patents rely more 

on existing patents.

Data scale Patent level Corporate level Corporate level Patent level Patent level Patent level

Advantages Introduce firm behavior Simple and straightforward Simple and 
straightforward

Simple and 
straightforward

Disadvantages Lack comparability Subjectivity and strategic behavior Logically doubtful Poor comparability 
at small scale

Application 
scenarios

Corporate technology 
cluster and international 

patent layout
Corporate strategic and tactical behaviors Few Simple verification 

at the large scale

This series of indicators is based on strong underlying assumptions:
Patent value and quality: Indicators such as claims and legal status presume that innovative entities 

have a precise understanding and evaluation of their patents’ value and that this value accurately reflects 
the patents’ quality.

Textual content analysis: Indicators based on textual content assume that the clarity and repetition 
rate of language in patent applications are directly correlated with the quality of innovation.

These foundational assumptions invite scrutiny regarding the indicators’ logic and comparability. As 
a result, their application may be more appropriate in specific contexts or for straightforward validation 
purposes rather than broader or generalized analyses.

5.2.3 Indicators of potential applications
Indicators of application potential often assess the quality of technological innovation indirectly by 

examining patent costs and value, relying on indicators such as patent status and market transactions. 
Patent status and legal status are essentially similar: while the latter infers quality from patent value, the 
latter focuses on measurement by legal clauses.

Table 7: Technological Innovation Quality: Application Prospect Indicators

Category
Patent Status Market Transactions

Patent expiration Patent 
maintenance Patent survival Patent transfer Patent licensing Patent pledge

Specific indicators Annual expiration rate Number of valid 
patents Patent survival rate Number of 

transfers Number of licenses Number of pledges

Meaning Patent maintenance costs, and the resulting patent status reflects 
a company’s valuation and, indirectly, the patent’s quality.

Patent quality can be inferred from its commercialization 
success, market recognition, and associated market 

valuation.
Data scale Corporate level Patent level
Advantages Introduces self-valuation behavior Introduces market valuation of patents
Disadvantages Subjectivity and strategic behavior Underestimates the value and quality of basic research
Application 
scenarios Corporate strategies and behaviors Applied patent evaluation
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5.3 Assessing Technological Innovation Quality: An Effectiveness Analysis in Narrative Contexts
The preceding sections used qualitative comparisons to evaluate the strengths and limitations 

of various indicators and their application contexts. They also justified the scientific rigor of our 
measurement approach. However, a quantitative analysis has yet to be conducted. Since no single 
indicator is universally applicable, and this study focuses on assessing the quality of technological 
innovation represented by invention patents within the Chinese context and institutional narrative, 
the subsequent analysis will center on the citation index (physical citations), a widely recognized and 
utilized benchmark.

5.3.1 Year-end patent application rush and its impact on effectiveness analysis: systematic bias
Businesses, universities, and research institutions are the primary drivers of R&D and innovation, 

and they are often subject to top-down incentives and performance evaluations. To meet annual 
targets for R&D expenditure and patent filings, these entities frequently engage in end-of-year pushes, 
accelerating spending and filing activities as the assessment period draws to a close. This is particularly 
evident in the context of patent applications. Figure 2, which displays the monthly percentage 
distribution of patent applications and grants based on filing and grant dates, highlights the year-end 
rush. The left and right panels show the filing and granting patterns of invention patents, respectively. 
Notably, the year-end surge in patent applications is striking: in November and December, patent 
filings account for 10.73% and 14.03% of the annual total, significantly exceeding the average monthly 
proportion of 8.33%. In contrast, filings in January and February drop sharply to 5.75% and 4.55%, 
reinforcing the conclusion that this end-of-year phenomenon is a consistent feature of invention patent 
applications.

Figure 2: Monthly Filings and Grants for Chinese Invention Patents (1985-2016)
Note: (Left) Invention patent filings; (Right) Granted invention patents. The red square line indicates the “patent surge” phenomenon for patent 
applications from November to February.

15

10

5

0 3 4 5 6 7 8 9 10 11 12 1 2

15

10

5

0 3 4 5 6 7 8 9 10 11 12 1 2

Month of application Month of application

Month of patent grant announcement Month of patent grant announcement
Mean Mean

Given the continuity of corporate R&D activities and the inherent dynamics of innovation, the 
year-end surge in patent applications likely reflects a trade-off between “quantity” and “quality”, where 
a spike in the number of filings may result in a corresponding decline in quality. To investigate this 
phenomenon, we empirically examine the impact of year-end surges on patent quality, using various 
indicators of technological innovation quality. Logically, under fixed resource constraints, it is not 
possible to simultaneously maximize both the quantity and quality of innovation outputs. Drawing 
on the framework established by Alfaro-Ureña et al. (2022), we apply an event study methodology to 
assess how year-end surges affect the quality of technological innovation at the prefecture-level city. The 
corresponding econometric model, designed to evaluate the validity of indicators based on the timing of 
patent application surges, is outlined as follows:

                     Patentitm =X T
itβ+     θDitm +αi +μpt +ξitm∑T

m=T                       (8)
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In equation (8), Patentitm denotes the technological innovation quality in prefecture-level city i 
during year t and month m, which is log-transformed before being included in the model. The vector X it 
represents control variables at the prefecture-level city-year level, capturing factors such as economic 
development, infrastructure, and the overall climate of the city. The monthly dummy variables are 
denoted by Ditm, Ditm:=ІІ[m T T, ], where ІІ[.] is an indicator function for each month. The model 
also includes prefecture-level city fixed effects αi and province-year fixed effects μpt. Additionally, θ 
represents the effect of specific months, which is the key coefficient of interest. The vector β  contains the 
coefficients for the control variables, and ξitm is the random error term. Based on the pattern observed in 
Figure 4, we set T =11 for November and T =12 for December, aligning with the year-end surge period.

Table 8: Policy Effects of Year-End Surges in Patent Applications: Validity Test of Indicators
(1) (2) (3) (4) (5)

Originality Citation count Influence Original impact Vitality

Ditm
-12.1556***

(2.5420)
0.2455*

(0.1284)
0.1161*

(0.0673)
-10.1168**

(4.6727)
-6.9203***

(2.5586)

Sample size 343572 343572 343572 343572 343572

Control variable Y Y Y Y Y
Province-year FE Y Y Y Y Y
Prefecture-level city FE Y Y Y Y Y
Notes: (1) Vitality is calculated using patent data up to the end of 2022. To account for the potential bias introduced by 
shorter observation windows for newer patents, we conduct robustness checks by considering the vitality of granted patents 
within n calendar years of their filing date. The table above reports results for n = 6; (2) All results are clustered at the 
prefecture-level city level.

As shown in the Table 8, the year-end surge in patent applications leads to a notable distortion in 
average patent quality during November and December, compared to other months. Specifically, our 
originality indicator reveals that the average originality of patents filed at year-end is 12.156% lower, 
whereas the commonly used citation count shows a slight increase of 0.246%. Logically, patents filed 
during the year-end surge should not exhibit superior quality compared to those filed throughout the year; 
in fact, they are more likely to be of lower quality. Therefore, the results in columns (1) and (2) suggest 
that our originality indicator is significantly more effective in capturing patent quality than citation 
count. For robustness, we also tested our constructed impact indicator, which closely resembles the 
citation count. As demonstrated in columns (2) and (3), this indicator supports the findings, confirming 
the similarity between the two measures. Furthermore, to highlight the advantages of originality in 
evaluating patent quality during the year-end surge, we used an alternative measure based on the 
subsequent citations of original patents - what we refer to as the “original impact indicator.  The results, 
shown in column (4), indicate that the semantic citation count for patents filed during the year-end surge 
is significantly lower by 6.920%. Finally, we employed the vitality indicator for further testing, and again 
observed a decline in patent quality during the year-end surge, as reflected in the vitality scores. Overall, 
due to the systematic bias introduced by the year-end surge in patent applications, the originality, vitality, 
and original impact indicators developed in this paper provide a more accurate measure of patent quality 
compared to the traditional patent citation count.

5.3.2 Evaluating the effectiveness of patent prior art citations: The role of individual bias
The Chinese patent examination system requires applicants to provide technologies in the prior 

art section that are useful for understanding, searching, and examining the patent. Applicants are also 
allowed to cite reference documents that reflect this prior art. To increase their chances of obtaining a 
patent, applicants often have an incentive to signal innovation by omitting certain reference documents, 
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thereby manipulating the appearance of their patents as more pioneering than they actually are. This 
practice allows non-pioneering patents to be portrayed as pioneering through selective citation.

In a study based on U.S. patent application data, Dimos and Regan (2022) found that 22% of U.S. 
patent applications included citation information added by patent examiners, rather than the applicants 
themselves. This highlights the potential for citation manipulation in patent filings. The study suggests 
that relying on citation counts as an indicator of originality may lead to an overestimation of a patent’s 
true innovative contribution.

To assess the validity of our technological innovation quality indicators, we employed the following 
identification strategy: First, we analyzed the correlation between original patents and patent applications 
that claim pioneering status. Second, we investigated the relationship between pioneering status and 
originality with citation count, using citation count as a widely recognized measure of patent quality. 
Third, we applied a stacking effect identification strategy to compare the effectiveness of pioneering 
status and originality from the perspective of citation count. The results of these estimations are 
presented in Table 9.

Table 9: Validity Tests of Indicators Based on Patent Citation Information

(1) (2) (3) (4) (5) (6)

Originality Adjectivally 
qualified originality

Citation 
count

Citation 
count

Citation 
count

Citation 
count

Pioneering 0.5576***

(0.1169)
0.6103***

(0.1399)
1.2418***

(0.3241)

Originality 2.0736***

(0.4765)
Pioneering but not 
original

0.2103**

(0.1048)

Pioneering and original 1.4588***

(0.4057)
1.5556***

(0.4445)
Original but not 
pioneering

0.7011*

(0.3719)
Sample size 9176 9176 9176 9176 9176 9176

Control variables Y Y Y Y Y Y

Province-year FE Y Y Y Y Y Y

Prefecture-level city FE Y Y Y Y Y Y

Notes: (1) Pioneering status indicates whether citation information is missing in the prior art section of the patent 
application; it takes a value of 1 if missing, and 0 otherwise; (2) All results are clustered at the prefecture-city level; (3) 
Citation counts are the average number of citations per patent at the prefecture-city level.

Column (1) of the table above explores the correlation between the pioneering status reported in 
patent citation information and actual originality. While the two are significantly positively correlated, 
the correlation coefficient between the applicant’s declared pioneering status and true originality is 
smaller than anticipated. This may be because the originality claimed by applicants does not necessarily 
reflect disruptive innovation, but rather incremental improvements based on existing technologies. To 
address this, we adopt the methodology of Chen et al. (2022), introducing adjectives to more precisely 
capture the degree of originality. Using this refined approach, we re-examine the correlation, and the 
results are presented in Column (2). Here, we observe that the correlation coefficient between the 
applicant’s declared pioneering status and true originality remains modest. In Columns (3) and (4), we 
further investigate the relationship between declared pioneering status (self-reported innovativeness) and 
originality with citation counts. The results reveal that the correlation between originality, as measured in 
this study, and citation count is significantly stronger than the correlation between pioneering status and 
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citation count11.

5.3.3 Validity analysis of granular instrumental variables: Correction for systematic and individual 
biases

The above analysis highlights the presence of both systematic and individual biases in patent 
applications, suggesting that innovation quality cannot be accurately gauged through direct indicators 
such as citation counts of patent applications or grants alone. To address this issue, one potential 
strategy is to leverage granular instrumental variables (GIVs) to account for these biases and provide 
a more accurate measurement of technological innovation quality. A significant body of literature has 
shown that many key decisions are influenced by a small number of large entities, such as major firms, 
industries, or countries. The actions and shocks of these large players can have a disproportionate impact 
on their respective industries or economies, with their idiosyncratic shocks contributing to broader 
economic fluctuations (Gabaix, 2011; Carvalho and Gabaix, 2013; Acemoglu et al., 2017; Banarjee 
and Li, 2022). In a similar vein, Gabaix and Koijen (2020) describe these entities as “big granules”. 
By assigning greater weight to these large players, they propose using the individual shocks of these 
granules as instrumental variables, which can help isolate the effects of technological innovation 
from the interference of common trends or heterogeneous shocks that affect individual entities. This 
method is known as using granular instrumental variables (GIVs). In economies with a significant 
number of large granules, leveraging the individual shocks of these entities can effectively eliminate the 
confounding influence of common trends and individual heterogeneity. In the subsequent sections, this 
paper will apply the concept of GIVs to construct appropriate instruments and test the key indicators of 
technological innovation quality, as discussed earlier.

nikt is defined as the technological innovation quality observed for firm i in prefecture-level city k 
during month t. It consists of three components: (1) true innovation quality uikt, which is not directly 
observable; (2) systematic bias ukt , representing prefecture-level city k-specific disturbances faced by 
firm i at time t; and (3) individual bias, expressed as the product of a common shock ηt faced by firm i at 
time t and the intensity of the firm’s exposure to this shock λi, represented as:

                            nikt =λiηt +ukt +uikt                             (9)
Considering a simplified scenario: λi=1, i.e., uniform loadings, and aggregating equation (9) by 

summing across firms within prefecture-level city k based on their size, we obtain the size-weighted 
innovation quality of prefecture-level city k, represented as:

                          nS
kt =ηt +ukt  +∑ i k S

k
i uikt                           (10)

Similarly, the average weighted innovation quality of prefecture-level city k is defined as nE
kt:

                          nE
kt =ηt +ukt  +∑ i k E

k
i uikt                           (11)

In the above equation, Ek
i = N

1 . Subtracting equation (10) from equation (11) yields the first granular 
instrumental variable z1

kt:

                        z1
kt =nS

kt−nE
kt =∑ i k S

k
i uikt −∑ i k E

k
i uikt                  (12)

Since uikt represents a firm-level specific shock, it only affects specific firms. It is straightforward to 
derive that the exogeneity assumption holds for all i, k, and t, i.e., it is easy to obtain E[zktεkt]=0 based on 
E[uiktεkt]=0. Where, εkt represents the aggregated value of the error term in equation (9) at the prefecture-
level city level. Based on equation (12), it can also be derived that z1

kt satisfies the relevance assumption, 
i.e., E[zkt n

S
kt ]≠0. In equation (9), we considered the case of uniform loadings. In fact, the common shocks 

11 This conclusion is based on the Chow test results.
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in the observed variation of innovation quality may include not only the single factor ηt, and the degree 
to which each sample i is affected by the factors also varies. To capture the effects of multiple factors and 
heterogeneous shocks, we further rewrite equation (9) as:

                         nikt  =λiηt +ukt +uikt , λiηt =∑r
f=1 λ

f
iη

f
t                         (13)

In equation (13), λ f
i represents the factor loading, measuring the impact of the f th common factor η f

t 
on the firm i’s observable innovation quality; ukt  represents the common shock at the prefecture-level 
city level; uikt  represents the firm-level specific shock; and r is the number of factors. For equation (13), 
the key is to extract the specific shocks to construct the GIV. Aggregating equation (13) at the prefecture-
city level by firm innovation output size yields the change in observable innovation quality of prefecture-
level city k:

              nS
kt ≡∑ i k S

k
i nikt=∑ i k∑r

f=1 S
k
i λ

f
iη

f
t +ukt  +∑ i k ∑r

f=1S
k
i uikt              (14)

In equation (14), ∑ i k S
k
i =1. Equation (14) can be further expressed in vector form as:

                                 nt =Ληt +ut                                     (15)
In equation (15), nt, ηt and ut  are all NK×1 column vectors; K is the number of industries; Λ is an 

NK×r matrix and satisfies E[ηtεt]=0. We construct a set of weights Γ RNK orthogonal to Λ, satisfying 
Γ’Λ=0. At this point, the second GIV can be constructed:

                               z2
kt =Γ’nt  =∑ i k Γinikt                              (16)

Next, we construct two granular instrumental variables (GIVs) for citation counts, z1
kt and z2

kt, and 
further test the correlation between the instrumental variables and the originality and originality impact 
constructed in this paper, and compare the results with the estimated coefficients of citation counts. The 
estimation results at this point are shown in Table 10.

Table 10: Validity Analysis of Granular Instrumental Variables (Correlation Comparison)

Variable
(1) (2) (3) (4) (5) (6)

Originality Originality impact

Citation count 0.4816***

(0.1002)
0.2258***

(0.0694)

z1
kt

0.8556***

(0.1745)
0.4144***

(0.1163)

z2
kt

0.8860***

(0.1728)
0.4957***

(0.1329)

Sample size 343572 343572 343572 343572 343572 343572

Controls Y Y Y Y Y Y

Province-year FE Y Y Y Y Y Y

City FE Y Y Y Y Y Y

As can be seen, after introducing granular instrumental variables to eliminate systematic and 
individual biases in patent citation counts, the correlation between the granular instruments and the 
originality constructed in this paper significantly increased: compared with the coefficient of citation 
counts (0.482), the coefficients of the two granular instrumental variables become significantly larger, 
which further supports the conclusion that the originality and originality impact constructed in this paper 
are more effective than citation counts.
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6. Application Analysis: Indicator Extension and Family Tree
6.1 Indicator Extension

The above analysis measures the quality of corporate technological innovation across three 
dimensions - innovation originality, innovation impact, and innovation vitality - and finds, within the 
specific context of China, that these indicators are more effective than traditional indicators like patent 
citation counts. However, each indicator has its own emphasis and potential “measurement biases” 
in certain situations (Figure 3): (1) Innovation Originality focuses on novel, first-of-its-kind patents, 
emphasizing “from zero to one”, but may encourage obscure or niche innovations that prioritize novelty 
over practical value. (2) Innovation Impact measures the influence on subsequent R&D, which can 
lead to a bias toward “hot topics” or “popular fields” rather than more foundational breakthroughs. (3) 
Innovation Vitality emphasizes the longevity of impact but may overlook the role of newer innovations 
and is influenced by random factors, affecting its reliability in certain contexts.

Figure 3: New Measures of Technological Innovation Quality (Potential Problems and Metric Expansion)

• Chasing Hot Topics
• Imitative Innovation

Innovation Impact

New Measures of High-Quality 
Technological Innovation

• Deliberately Seeking Novelty
• Obscure and Unpopular

Innovation Originality

• Insufficient Impact
• High Randomness

Innovation Vitality

In light of the limitations and strengths of these three categories of indicators when individually 
assessing technological innovation quality, we further consolidate them into two composite indicators:

(1) Innovation originality affect (IOA). To account for both patent originality and impact, this paper 
introduces the IOA index, which is measured by the total semantic citation count of original patents 
within the sample period.

                  IOAit = Sijkl,t+m xijklt,m [0,M ]∑ ∑∑ ∑M LK J
0 lk j                   (17)

In equation (17), sijkl,t+m denotes the number of semantic citations received in year t+m by the 
“innovation gene” j of the l th patent belonging to firm i in industry k. M represents the time lag between 
the end of the sample period and year t. xijklt denotes whether the “innovation gene” j present in the firm i’s 
patent l in sector k during year t is original.

(2) Innovation originality-vitality (IOV). Drawing on the strengths of both innovation originality and 
innovation vitality, we introduce the IOV index to assess the longevity of original innovative genes.

                          IOVit =
(yijklt −t)xijklt∑∑ ∑LK J

lk j

piklt ∑∑ LK
lk

                         (18)

In equation (18), yijklt denotes the final year within the sample period that features the “innovation 
gene” of the lth patent held by firm i in industry k during year t, while piklt denotes the count of “innovation 
genes” present in the l th patent of firm i in industry k during year t.

(3) Affect originality-vitality (AOV). Drawing on the strengths of both innovation impact and 
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innovation vitality, we introduce the AOV index to assess the longevity of the impact generated by 
“innovation genes”.

                         AOVit =
(yijklt −t)Sijkl,t+m∑∑ ∑LK J

lk j

piklt ∑∑ LK
lk

                          (19)

6.2 Family Tree
To summarize, we have synthesized the key existing indicators for evaluating technological 

innovation quality and developed a comprehensive family tree of measurement systems for high-quality 
technological innovation (Figure 4). These indicators can be broadly categorized into six distinct 
scenarios: (1) Disruptive technology and general-purpose applications: relevant across various 
contexts, primarily utilizing indicators based on originality, impact, and vitality as developed in this 
study; (2) Interdisciplinary research and collaborative innovation: focused on indicators that assess 
the technological scope within the broader framework of innovation assessment; (3) Technology 
deployment and commercialization: centered on market transaction indicators, specifically within 
the context of technology citations; (4) International technology transfer and global contexts: 
emphasizing indicators related to the foreign dimensions and global attributes of technological 
innovation.

Figure 4: Family Tree of Technological Innovation Quality (Indicators and Scenarios)
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7. Conclusion and Policy Recommendations
In the face of rapidly accelerating advancements in disruptive, transformative, and frontier 

technologies, this paper aims to establish a comprehensive framework for identifying and measuring 
high-quality technological innovation. Our analysis, drawing on representative innovation scenarios in 
China, highlights the following key findings:

(1) Innovation policy vs. practical implementation: While China’s national innovation policy places 
a strong emphasis on quality, practical efforts in innovation often suffer from strategic challenges. A 
primary issue is the tendency to prioritize quantity over quality, resulting in shortcomings in the current 
quality indicators used to assess technological progress.

(2) Effective indicators for measuring innovation quality: Indicators such as originality, impact, and 
vitality - derived from advanced methods like textual analysis and semantic citation analysis - are more 
effective in capturing the true quality of technological innovation compared to conventional measures.

(3) Superior performance of novel indicators: Validity tests, including analysis of patent application 
rushes, patent citation data, and granular instrumental variables, demonstrate that our proposed indicators 
outperform traditional indicators like citation counts in evaluating the quality of innovation.

(4) Context-specific applicability of indicators: Different innovation contexts - such as technology 
application and commercialization, corporate strategy, interdisciplinary research, and collaborative 
innovation - demand tailored indicators. Our framework, in particular, is well-suited for assessing 
disruptive innovations and technologies with broad, general-purpose applications.

Based on these findings, we offer several important policy recommendations:
First, selecting appropriate indicators based on specific application scenarios and developmental 

contexts is critical to avoiding the misuse and misapplication of technological innovation indicators. 
As shown in the comparative analysis of the technological innovation quality family tree and related 
indicators presented in this paper, each indicator has distinct strengths and weaknesses, and using them 
improperly can undermine measurement accuracy. For example, our originality and impact indicators are 
particularly suited for evaluating disruptive technologies and general-purpose applications, while market 
transaction indicators excel in assessing technology commercialization and application. Additionally, 
indicators focused on international engagement attributes are more appropriate for analyzing cross-
border technologies and global contexts. In China’s innovation landscape, a longstanding challenge has 
been the relative scarcity of disruptive, frontier, and original technologies, positioning the country more 
as a follower than a leader in the global innovation network. In the era of high-quality development, 
fostering and leading original innovation for future industries has become increasingly essential. 
Therefore, at the national level, it is crucial to proactively identify, evaluate, and forecast emerging 
technological frontiers and trends, while developing adaptive innovation incentives and mechanisms that 
encourage risk-taking and tolerate failure.

Second, a technology innovation assessment system focused on quality must be established to 
address strategic innovation challenges. The primary obstacle to China’s innovation-driven development 
strategy is the insufficient proportion of original, disruptive, and revolutionary innovations, resulting in 
“bottlenecks” and an “outsider” status in critical high-tech sectors. While China’s overarching innovation 
policy emphasizes quality, practical implementation often prioritizes quantity. A key contributing factor 
is the difficulty in accurately measuring and analyzing innovation quality. For example, in current high-
tech enterprise certification and local government patent initiatives, patent quantity is often the main 
metric or development target, which incentivizes rent-seeking behavior through patent applications 
aimed at securing policy benefits. To address this issue, when formulating policies and designing 
innovation incentives, the government should adopt the innovation quality measurement system 
proposed in this paper. By using enterprise innovation quality as a key performance indicator, it can 
replace or reduce the emphasis on quantity-based indicators, thereby improving the effectiveness of 
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innovation incentive policies. Leveraging the series of technological innovation quality indicators and 
their appropriate application contexts, science and technology authorities and local governments can 
integrate innovation quality into their evaluation and assessment frameworks. By prioritizing “quality” 
and relegating “quantity” to a secondary role, a system can be cultivated where “good money drives out 
bad”, fostering more impactful and sustainable technological innovation.

Third, the predictive capabilities of technological innovation quality indicators should be effectively 
harnessed to identify and analyze emerging technologies and future industry trends. The accelerating 
pace of disruptive, frontier, and transformative technological advancements is reshaping traditional 
industries while giving rise to new sectors, business models, and formats - significantly influencing 
future economic development. The transition from innovation to industrial application is a multi-stage 
process - from basic research to applied research, and eventually to market deployment - marked by 
inherent time lags. As such, identifying foundational and applied technologies with the potential to drive 
future industries is crucial for building dynamic advantages at the national, regional, and sectoral levels. 
By leveraging the predictive power of relevant technological innovation quality indicators, we can 
analyze and anticipate emerging technologies and industry dynamics more effectively. This will enable 
the development of methodologies for seizing emerging industrial opportunities, capturing nascent 
technological frontiers, and securing critical technology links. Such insights empower enterprises 
and government agencies to better understand and navigate future technological trajectories, position 
themselves strategically in high-tech sectors, anticipate future needs, and align with the direction and 
context of technological development. This proactive approach will help secure a competitive edge 
in industrial upgrading and global competition. Ultimately, by using predictive innovation quality 
indicators, China can position itself as a leader in global innovation and provide strong evidence to guide 
the design, formulation, and refinement of innovation incentive policies.    
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